Last updated on March 2018

Brain Changes in Fear

Brief description of study

The purpose of this study is to use brain imaging technology to investigate brain changes in people exposed to predictable versus unpredictable unpleasant stimuli. Unpleasant events that can be predicted evoke a response of fear, whereas unpredictable, unpleasant stimuli cause chronic anxiety not associated with a specific event. Information gained from this study may help in the development of more effective treatments for anxiety disorders.

When confronted with fearful events, people eventually develop fear of specific cues that were associated with these events as well as to the environmental context in which the fearful event occurred. Evidence suggests that cued fear and contextual fear model different aspects of anxiety. However, studies that examine the way the brain affects expression of contextual fear have not been conducted. This study will use magnetic resonance imaging (MRI) or Magneto-encephalography (MEG) to compare the brain activity underlying fear brought on by predictable and unpredictable aversive stimuli.

Detailed Study Description

This protocol examines the neurobiology of fear and anxiety using various approaches. During fear conditioning in which a phasic explicit cue (e.g., a light) is repeatedly associated with an aversive unconditioned stimulus (e.g., a shock), the organism develops fear to the explicit cue as well as to the environmental context in which the experiment took place. Experimental evidence suggests that cued fear and contextual fear model different aspects of anxiety. Studies in patients indicated that contextual fear may model an aspect that is especially relevant to anxiety disorders. However, the neural basis for the expression of contextual fear has not previously been elucidated in human imaging studies.

One important determinant of contextual fear is predictability: contextual fear increases when a threat (e.g., electric shock) is unpredictable, as opposed to when the threat is predictable. The aim of this study is to compare the neural substrates underlying fear evoked by predictable versus unpredictable shocks. Animal studies have indicated that conditioned responses to predictably cued threat and to less explicit threat are separate processes mediated by distinct brain structures. Psychophysiological data suggest that the proposed procedure can differentiate between these two responses. Hence, we anticipate that this procedure will allow us to compare brain correlates of these responses in humans.

Another objective is to study effects of threat of shock on processing and learning of threat cues in the amygdala, the visual and auditory systems, and motivation/reward systems. This will be investigated by means of event-related magneto-encephalography (MEG) and fMRI measurements using various paradigms.

Finally, a last project will examine how pharmacologic manipulation of gamma-aminobutyric acid (GABA) levels with the benzodiazepine alprazolam affects the relationship between GABA concentration (quantified with magnetic resonance spectroscopy, MRS), visual-and auditory-induced gamma oscillations (measured with MEG), and fMRI BOLD response.

Clinical Study Identifier: NCT00047853

Contact Investigators or Research Sites near you

Start Over

For more information at the ...

National Institutes of Health Clinical Center, 9000 Rockville Pike
Bethesda, MD United States
  Connect »